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Abstract—The dimensionality of face space is measured objectively in a

psychophysical study. Within this framework, we obtain a measurement of the

dimension for the human visual system. Using an eigenface basis, evidence is

presented that talented human observers are able to identify familiar faces that lie in

a space of roughly 100 dimensions and the average observer requires a space of

between 100 and 200 dimensions. This is below most current estimates. It is further

argued that these estimates give an upper bound for face space dimension and this

might be lowered by better constructed “eigenfaces” and by talented observers.

Index Terms—Face and gesture recognition, computational models of vision,

psychology, singular value decomposition.
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1 INTRODUCTION

THE general face recognition problem seeks the identification of a
person in a scene based on known faces in a stored database. This
problem may be regarded in three stages [1]: face detection [2], [3],
feature extraction [4], and face identification [5], [6], [7], [8]. The
present study focuses on the third stage, which includes
representation [5], [6] and recognition [7], [8].

Implicit to the present approach is the fact that the image of a
face is dealt with in its entirety and not in terms of its parts or
elements; thus, in essence, this approach is holistic. This procedure
has its origin in a body of related mathematical methods having
the acronyms SVD, PCA, KL, EOF, POF, and so forth, an approach
that has been discovered and rediscovered many times over [9].
Common to all of these is a reliance upon empirical data to
generate a mathematically optimal coordinate system that is
intrinsic to the data. The coordinates are eigenfunctions of a
data-generated operator and, thus, may be referred to in general as
empirical eigenfunctions. We avoid the fine points of the various
acronyms, although SVD best describes the approach used here.
The introduction of this approach for face recognition first appears
in [5], where it was shown to lead to a low-dimensional description
of face space. The appropriate dimension of this space is a central
concern of this paper. Mention should also be made of other
holistic-based methods [10], [11], [12], [13], [14], [15], [16], [17].

The eigenface approach, perhaps the first face recognition model
aimed at extracting information important for recognition, was
based on the premise that a relatively small number of elements or
“features” could be efficiently used for face recognition [7], [8].
Dimension reduction should be expected since faces share the same
basic configuration and shape. Eons of evolution suggest that the
human brain possesses an optimal algorithm for face recognition.
Given the sheer size of an individual’s lifetime database, it is
astonishing that as little as 75 milliseconds of viewing time is needed
for face identification and only 800 milliseconds to solve the face
recognition problem [18]. Sorting through a lifetime database in this
short span of time is inconceivable without some sort of compact
representation. The eigenfunction approach [5], [6], [7], [8] was the
first successful attempt to find global “features” that are important
for discriminating faces and to model a compact representation in an
automated face recognition setting.

The dimension of face space may be reasonably defined as an
acceptable threshold number of dimensions necessary to specify an
identifiable face. Performance of various face recognition algo-
rithms is largely evaluated in terms of recognition accuracy as a
function of dimension. Recognition performance is calculated as the
proportion of test images that are correctly identified. In the
common scheme, eigenfaces are constructed from a training set of
face images and particular test faces are recognized by comparing
the eigenface weights [8]. Correlation of two sets of weights may be
used as a comparison measure.

Recognition performance will suffer from insufficient informa-
tion if dimensionality is underestimated. On the other hand, an
overestimate of dimension will introduce noisy components which
also reduces performance [19], [20]. The number of dimensions of
face space also figures in the speed and accuracy of processing large
face databases. In addition, the dimensionality question is critical
to the performance of schemes based on dimensionality reduction
[20], [21], [22]. In all this, it is important to note that face space is
specific to the representation of human faces and any image which
diverges from a conventional human face, e.g., a monkey face [23],
is not as well captured by face space.

A typical approach to the determination of dimensionality is to
examine the variance captured by the eigenfaces and to search for
the location of significant drop-off in the variance (eigenvalue)
spectrum [5], [6], [21]. The question of dimensionality within a
probabilistic framework looks at the signal-to-noise ratio (SNR) of the
reconstructions [20]. Both methods allow us to determine how much
pixel information has been captured in a reconstruction from an
original image; however, they do not inform us about whether or not
information critical for the identification of a face has been captured.

While the empirical eigenfunction approach is both objective
and optimal, like the less efficient pixel representation, it is man-
made. It is plausible that the human face recognition system is
using some other algorithm. This is relevant since, in this study, we
hope to gain some sense of the representation used by human
observers, albeit with the eigenface approach.

Penev and Sirovich [20] implicitly suggest that perceived image
quality can be used to measure the dimensionality of face space;
however, no objective assessment of this aspect of images was
studied. Here, we report on a human psychophysics experiment
which interrogates the human visual system to estimate the
number of dimensions necessary for recognition of a face. By
measuring the recognition threshold at which enough information
is present for human observers to classify a face as familiar, we can
come closer to the intrinsic dimensionality of human face space. A
related but complementary psychophysical approach to face
classification was recently considered in [24] (also see [25]).

The use of error or variance as a determinant of identification
may be required for machine identification and, in such terms, a
dimension of O(500) has been contemplated [20]. From another
perspective, there is the intrinsic dimension of the algorithm used by
the human visual system. Our results indicate a dimension that is
closer to 100. In determining this estimate, we have used the
eigenface framework, a man-made coordinate system. It is possible
and probable that our visual apparatus uses a more efficient
“basis,” perhaps some sort of sparse coding of faces [26] or other
efficient coding [27]. From this perspective, our estimate of
O(100) dimensions for identification is an upper bound for the
intrinsic dimension. It should also be noted that nonholistic
methods which parse a face into component parts offer another
approach which may further reduce the dimension. In particular,
Gabor transforms and Gabor jets which focus on fiducial facial
locations are appealing [28], [29], [30], [31].

2 BACKGROUND

In the experiment, facial images viewed by human observers
appeared on a computer monitor. All face images were converted to
gray-scale levels and then normalized by an affine transformation
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that set the centered intereye line horizontal and 24 pixels apart.
Images were cropped to 128� 128 pixels and an oval mask, the
shape of an average face, was applied to each image. Pixels outside
the mask were set to 0. There were 3,496 pixels inside the mask.
Every image was normalized so that the reflectance of cheek areas
were on average the same [5].

The basic ensemble of facial images which was used contained
993 frontal images from the 2003 US Army FacE REcognition
Technology (FERET) [32] color database and this set was augmented
by 40 images acquired by us. As described in [6], there are a number
of advantages in doubling the ensemble by including mirror images
of each ensemble member. In so doubling the augmented FERET
database, we obtained a training set of 2,066 images. An additional
40 images were sequestered for later use and not included in the
basic population. SVD of the training set ensemble of 2,066 faces was
performed and resulted in the eigenfunctions (eigenfaces),  nðxÞ
and the corresponding eigenvalues, �n (see the Appendix).

Eigenvalues are nonnegative and the ratio �n=�n�n furnishes the
average probability that a corresponding eigenface  nðxÞ appears in
the representation of a face. Fig. 1 shows the probability spectrum of
the FERET-augmented database from index 2 to 1,500 components.
The first eigenface lies close to the average face and, thus, has a
disproportionately large eigenvalue, which we leave out of the plot.
As might be supposed, and is supported by the eigenfaces seen in
Fig. 2, high index eigenfaces capture noise, while early indices relate
to the actual components of a face and, thus, indicate signal. As
shown in Fig. 1, the spectrum is well-fitted by two straight lines,
suggesting two power law regions. The line which captures the
signal components has a slope of -1.43 and the line that captures the
noise components has the slope -2.14. In [20], it is observed that the
remnants of facial structure in the eigenfaces decay slowly after the
first 100 components, as seen in Fig. 2. The cross-over point of Fig. 1
lies at roughly n ¼ 200, which was used in [5] and [6] as a basis for
establishing a dimension estimate. Similarly, the deliberations of
[20] are in large part based on the error incurred in reconstructing a
face from its projection onto a truncated number of eigenfaces. Since
the norm of the ratio of the reconstruction, to the residual error was
used as a measure, this was termed signal-to-noise ratio (SNR), a
usage we follow. SNR is a measure of error in the reconstruction, i.e.,
the amount of variance that has been captured in the reconstruction.
Thus, a reconstruction which is a better fit to the original face will
have a larger SNR. Penev and Sirovich [20] suggested that most face

identity information necessary for recognition is captured within an
SNR span of approximately 7-7.5 octaves, which, in their case, could
require O(500) components. See (6) in the Appendix for a precise
definition of SNR.

It is important to realize that the dimensional estimates of [5],
[6], [20], and related studies are based on euclidean distance
measured in the pixel space of face images. Clearly, this distance,
and, in particular, SNR does not inform us about error tolerance,
and, hence, dimension, for the human visual system that monitors
face recognition. A goal of this paper is the exploration of the issue
of dimension by measuring this error tolerance.

3 EXPERIMENT

The goal of the experiment was to arrive at an estimate of the
dimension of face space as it might appear in the algorithm for
recognition used by the human visual system. To achieve this goal,
we designed an experiment in which human observers were shown
partial reconstructions of faces and asked whether there was
recognition.

Ten healthy volunteers participated in the experiment (five men
and five women, mean age 27, range 20-35, all right handed): all
had normal or corrected-to-normal vision. The observers viewed
images on an optimally placed computer monitor.

In more detail, the experiment was performed in two parts: The
first part sought to assess a baseline for the observers’ knowledge of
familiar faces. Images of 46 people (three images of each) deemed to
be familiar, i.e., popularly recognizable faces, were shown to
observers. Participants were asked to respond with one of the
following options: high familiarity, medium familiarity, or low or no
familiarity. None of the images used in this preliminary part of the
experiment figured in the training set or in later stages of the
experiment. In addition, six of the baseline people were left out of
second part altogether, so that observers would not be able to use
the process of elimination in classification. Baseline familiarity
ratings for each observer are plotted in Fig. 7, which we discuss later.

In the second part of the experiment, the observers viewed the
truncated versions of 80 faces, referred to as test faces: 20 familiar
and 20 unfamiliar images that were added to the FERET training set
and an additional 20 familiar and 20 unfamiliar images not in the
training set that were added in order to monitor differences in the
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Fig. 1. Log-log plot of probability projection along the eigenface directions for the

first 1,500 components. The curve is fitted with two dotted lines. We drop out the

first point in this plot because the first eigenface is close to the average face of the

population. The two power law fits cross at n � 200.

Fig. 2. The first 16 and eight other eigenfaces of the training set.



recognition ability of truncated images not in the training set. The
sexes of the test faces were balanced across familiarity and training
set inclusion. In the interest of simplifying the problem, we chose
only Caucasian faces and, hence, a relatively homogeneous
population was used in classification. In the same vein, test faces
with facial hair, extreme features, or any other distinguishing
characteristics were excluded. In order to match the unfamiliar and
famous test faces in attractiveness, we used photographs of
unknown models and actors for the unfamiliar test faces.

In Figs. 3a, 3b, and 3c, one unfamiliar and two familiar test
faces from outside the training population are reconstructed to
successively higher degrees. The number of eigenfaces appears on
the top and the SNR on the bottom. These three out-of-population
faces appear to need no more than 200 elements, as suggested by
Fig. 1, however, different observers make varying judgments. To
estimate the error tolerance of the human face recognition system,
we performed an experiment asking observers to discriminate
between familiar/unfamiliar faces reconstructed as a function of
varying SNR.

Observers first viewed all 80 test faces in a random sequence
reconstructed to an SNR of 5. Then, in the same manner, images
reconstructed for each subsequent SNR were viewed. SNR was
incremented in even steps of 0.5 until 10 was reached, with 11 steps
in all.

In reconstructing an image, faces were incremented in equal
steps of SNR instead of by eigenface count. This ensures that, with
each new face stimulus, equal amounts of variance are captured,
which is a procedure intrinsic to the face. Thus, faces are
reconstructed at slightly different rates depending on how distinct
they are from the faces that are used to generate the eigenfaces [33].
Observers viewed 880 images in this part of the experiment.

Half of the test faces classified by the observers in the
psychophysics experiment were in-population, i.e., they were part
of the training set used in the construction of the eigenfaces and the
other half were out-of-population. This furnished a baseline
comparison of reconstruction error. The mean SNR of each group
is plotted as a function of the component count in Fig. 5, confirming
the fact that in-population faces are better reconstructed. The
standard error of the mean (�=

ffiffiffi
n
p

, where � is the standard deviation
from the mean and n ¼ 40 is the sample size) shows small variation
in the rate of reconstruction and remains constant as a function of
dimensionality. Fig. 5 gives the specific relation SNR ¼ fðnÞ, i.e.,
SNR as a function of the eigenface index. Both curves are well-fitted
by power laws SNR / np, with p � 1=7� 1=6. In passing, we
remark that in the limit of an unbounded training set, the two curves
of Fig. 5 should converge to each other; thus, Fig. 5 also measures the
completeness of the eigenface basis.

4 ANALYSIS OF DATA

Data gathered in the experiments were analyzed using Receiver
Operating Characteristic (ROC) curves [34], [35], [36], [37], [38] to
classify familiar versus unfamiliar faces. An ROC curve is
essentially a plot of false positives versus true positives. ROC
analysis, invented for dealing with noisy radio transmissions, deals
with threshold effects in the trade-off between false positives and
false negatives. It has been used in studies of object detection [38],
edge detection [37], and machine learning [34]. In the present
psychophysical study, the “device” experiencing uncertainty is a
human observer who supplies a response based on an internal
decision on face recognition. Typical ROC analysis factors the
variation of thresholds of certainty. In our study, the human
observers distinguish the degree to which a face is familiar or
unfamiliar. Observers were asked to respond with one of the
following options:

1. high certainty a face is unfamiliar;
2. medium certainty a face is unfamiliar;
3. low certainty a face is unfamiliar;
4. low certainty a face is familiar;
5. medium certainty a face is familiar;
6. high certainty a face is familiar.

This is a standard rating procedure in psychophysics [39], [40],
[41]. This six-point response is transformed into a binary for
recognition, based on five different thresholds for the observer’s
responses, r: r > 5, r > 4, r > 3, r > 2, and r > 1. Thus, r > 5 may be
regarded as the probability that the observer is certain that he/she
is viewing a familiar face, given that a familiar face is indeed being
viewed. r > 4 is this probability plus the probability of medium
certainty and, so forth, with corresponding cumulative probabil-
ities. Thus, an image which received a score above a specific
threshold was classified as familiar and, otherwise, it was classified
as unfamiliar. The proportion of true positive responses was
determined as the percentage of familiar faces that were classified
as familiar at a particular threshold, while the proportion of false
positive responses was determined as the percentage of unfamiliar
faces that were classified as familiar at a particular threshold. Each
threshold setting corresponds to one point on the ROC curve.
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Fig. 3. An example of the reconstructions of (a) unfamiliar and (b) and (c) familiar

out-of-population faces. Each reconstructed image is labeled with the number of

components,  n, on the top and the SNR on the bottom.



To illustrate the use of this procedure, consider Fig. 4, which
shows the series of ROC curves for a single observer. Clearly, pure
chance is described by a 45 degree line, shown as a dashed line. Each
SNR appears at the five thresholds and these appear as we move
from left to right in the plots, going from low false positives to high
false positives. The data for SNR < 7.5 hovers near the 45 degree line
and might be regarded as being noisy in contrast to SNR � 7.5,
which carries a high signal. Evidentally, the area between each curve
and 45 degree line corresponds to classification accuracy, an
increasing function of SNR. We follow common practice and use
the area under the ROC curve which simply adds a baseline value of
0.5 to the numerical classification of accuracy.

5 RESULTS

The plot of face classification accuracy (identification probability) as
a function of SNR is referred to as the observers’ psychometric
function [43]. Following standard practice, the psychometric
function is fitted by the Weibull distribution: pðSNRÞ ¼ 1� 0:5 �
expð�ðSNR=�Þ�Þ, where p is the proportion of faces identified

computed as a function of SNR. Parameter values are given in
Table 1. Fig. 6 shows the average face classification accuracy of
10 observers as a function of SNR. A classification accuracy of 1.0
indicates perfect stimulus detection and, conventionally, the point at
which there is a 50 percent improvement over chance in classifica-
tion accuracy (signal detection probability of 0.75) is chosen as the
detection threshold [42], [43].

It can be seen in Table 1 that the accepted standard of 0.75 for
the classification accuracy threshold [42], [43] for the average of all
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Fig. 4. A sample ROC plot for a single observer. The area between each curve and

the 45 degree line corresponds to the observer’s classification accuracy

(identification probability) for a specific SNR, as labeled in the legend.

Fig. 5. The average signal-to-noise ratio (see the Appendix for definition) and the

standard error of the mean for faces in and out-of-population are plotted as a

function of dimensionality for the first 500 components. The horizontal lines are

plotted at an SNR of 7.74 and 7.24, which correspond to the threshold of

recognition in Fig. 6.

TABLE 1
Parameter Values for the Weibull Distribution [43] in Figs. 6 and 8

Fig. 6. Average psychometric function for face classification. Average classifica-
tion accuracy is plotted versus the signal-to-noise ratio. Using ROC analysis, we
determined the average classification accuracy for 10 human observers
(asterisks) and fit this average to the Weibull distribution [43]. From the fitted
psychometric function, we calculated the lowest signal-to-noise ratio giving a
classification accuracy of 0.75 (See Table 1). Similarly, the average classification
accuracy was determined for the three “best observers” (circles) who were most
familiar with the familiar faces selected based on familiarity ratings in Fig. 7.

Fig. 7. Famous face familiarity rating. The combined histogram for each observer

adds to 40, the total number of familiar test faces.



observers is reached at an SNR of 7.74. Thus, from Fig. 5, we can
conclude that 161 in-population and 196 out-of-population
eigenfaces are sufficient for recognition. These observations are
in agreement with earlier remarks and with Fig. 1.

Next, we consider the important issue of the relationship
between dimensionality and how well faces are stored in memory.
Unlike most machine face recognition training sets, the human
lifetime database of faces is drawn from a virtually limitless reservoir of
images. We can expect that some familiar faces are better coded for
than others, especially since there is a more general eigenface basis or
counterpart to it. In addition, the number of exemplars can play a
role, e.g., the database of a person who watches the news frequently
may contain more exemplars of particular politicians, such as Bill
Clinton or George Bush. To address this issue, at the outset, we
asked observers to subjectively rate their familiarity with three
different baseline photographs. Once again, we emphasize that
these images were not used in the second part of the experiment. In
Fig. 7, it can be seen that not all observers were equally familiar with
the faces. Observers 2, 8, and 10 appeared to have a particularly
good representation of the familiar faces in memory, as evidenced
by their familiarity ratings in Fig. 7. The average psychometric
function of these three observers is plotted separately in Fig. 6 with
circles. These observers reached a 0.75 perceptual recognition
threshold at an SNR of 7.24, which, when converted by Fig. 5,
yields to an in-population dimensionality of 107 and an out-of-
population dimensionality of 124. The dimensionality measure
based on observers that have the highest baseline familiarity ratings
is significantly lower than the estimate based on the average
observer. This indicates that a person’s measure of dimensionality
might be dependant upon how well these familiar faces are coded in
memory, amongst other possibilities.

In Fig. 8, we plot the average psychometric function for faces that
were in and out-of-population separately. We can see that there is no
significant difference in classification accuracy as a function of
signal-to-noise ratio, as displayed by the error bars and, therefore,
there is little reason to regard this as a confounding issue.

6 DISCUSSION

Factors that could affect our estimates of dimensionality are
differences in face image composition such as facial expression,
facial hair, lighting, race, sex, and presence or absence of glasses. The
FERET database is rather heterogeneous, containing images with an
assortment of these attributes and our measure of dimensionality
could be influenced by such attributes. In selecting the test faces to

use for the psychophysics experiment, we endeavored to be
consistent in controlling for these factors. All test faces were centrally

lit, had neutral facial expression, did not have glasses or facial hair,
were equally split between the sexes, and were Caucasian.

We have determined that, on average, the dimension of face

space is in the range of 100-200 eigenfeatures. This estimation was

made within a face space as parameterized by eigenfaces. In past
works, the question of how much error the human face recognition
system can tolerate within this eigenface framework was touched
upon [20], [5], [6], but not really settled. By performing a human
psychophysics experiment, we have obtained a measure of this
error tolerance for the human visual system. However, the human
face recognition norm was arrived at within the eigenfunction
framework. There is no reason to assume that the human
perceptual system uses a Euclidean norm, nor that it uses
eigenfunctions. As mentioned earlier, the visual system may parse
a face into its parts. Thus, it is plausible that evolution has
improved on our man-made construction, in which case, ours is an

upper bound for face dimension.
We also found an indication that the error tolerance of

observers may be related to an observer’s prior familiarity with

the familiar faces, in which case, it might be supposed that such

observers had somehow incorporated more training samples of

these faces in their lifetime database of faces or had a better basis set in

their memory. Observers who were better acquainted with the

familiar faces performed better. These observers would appear to

provide an indication that there exists a range of dimensions,

reflecting a range of talents. This may be a reflection of what is

anecdotally referred to as a “good memory for faces.” Thus, the

best thresholds, 124 for out-of-population faces and 107 for in-

population faces, might be diminished by better “eigenfunctions”

and by more “talented” observers.
It should also be emphasized that our estimates of dimension

given above, and also those that follow, should be interpreted in the

somewhat narrow framework of our experiment. These dimension

estimates should in no way be regarded as applying to the entire

entity of human faces. It is rather the case that we are presenting a

perspective and a guide for dealing with the issue of face space

dimension, viewed as an innate measure in contrast to a metrical

construct.

APPENDIX
A face which has been normalized as described in Section 2.2.1 can
be represented by image intensity values fðxÞ, where x is the pixel
location and V is the total number of pixels in the image. We
consider the ensemble of T pictures ffðt;xÞgt2T with its SVD
representation [44] denoted by

fðt; xÞ ¼ �M
n¼1anðtÞ�n nðxÞ; ð1Þ

where M ¼ minðT;VÞ is the rank of the ensemble. Following

conventional notation, we have the orthonormality conditions

ðan; amÞt ¼ �tanðtÞamðtÞ ¼ �nm ¼ �x nðxÞ;  mðxÞ: ð2Þ

The weighting constants �n, are referred to as the singular values.
One can easily show that

ððfðt;xÞ; fðt;yÞÞt;  nðyÞÞy ¼ �n nðxÞ; ð3Þ

where �n ¼ �2
n is said to be the eigenvalue and

ððfðt;xÞ; fðs;xÞÞx; anðsÞÞ ¼ �nanðtÞ: ð4Þ

The reader should be cautious in comparing these deliberations
with their counterparts in [20] since an unconventional notation is
used in that reference.
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Fig. 8. Psychometric function for the face classification accuracy of all

observers (same as Fig. 6), but plotted separately for faces that were in and

out-of-population.



The pictures f ng are the eigenfaces of the ensemble. For a given

dimensionality N, the image reconstruction and the image error

are given by

frecN ¼ �N
n¼1an�n n and ferrN ¼ f � frecN : ð5Þ

Respectively, the signal to noise ratio (SNR) is defined as

SNR ¼ log2ðkfk2=kferrN k
2Þ ¼ log2 �M

n¼1a
2
n=�

M
n¼Nþ1a

2
n

� �
: ð6Þ
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